bs-0677R

[Primary Antibody]

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

Angiopoietin 2 Rabbit pAb

DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GenelD: 285 **SWISS:** 015123

Target: Angiopoietin 2

Immunogen: KLH conjugated synthetic peptide derived from human

Angiopoietin 2: 401-496/496.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

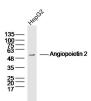
Background: The protein encoded by this gene is an antagonist of angiopoietin 1

(ANGPT1) and endothelial TEK tyrosine kinase (TIE-2, TEK). The encoded protein disrupts the vascular remodeling ability of ANGPT1 and may induce endothelial cell apoptosis. Three transcript variants encoding three different isoforms have been

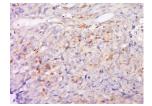
found for this gene. [provided by RefSeq, Jul 2008]

Applications: WB (1:500-2000)

IHC-P (1:100-500) **IHC-F** (1:100-500) **IF** (1:100-500)


Reactivity: Human (predicted: Mouse,

Rat, Pig, Chicken, Dog)


Predicted 53 kDa

Subcellular Secreted

VALIDATION IMAGES

Sample: HepG2(Human) Cell Lysate at 30 ug Primary: Anti-Angiopoietin 2 (bs-0677R) at 1/300 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 53 kD Observed band size: 53 kD

Tissue/cell: human colon cancer; 4% Paraformaldehyde-fixed and paraffinembedded; Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Incubation: Anti-Ang2 Polyclonal Antibody, Unconjugated(bs-0677R) 1:500, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining

— SELECTED CITATIONS —

- [IF=6.8] Ye Jiazhou. et al. Single cell-spatial transcriptomics and bulk multi-omics analysis of heterogeneity and ecosystems in hepatocellular carcinoma. NPJ PRECIS ONCOL. 2024 Nov;8(1):1-18 IHC; Human. 39548284
- [IF=6.68] Do HS et al. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-induced pluripotent stem cells. EBioMedicine. 2020 Jan 22;52:102633. IHC; Human. 31981984
- [IF=4.5] Yang Liu. et al. Octreotide modified liposomes that co-deliver paclitaxel and neferine effectively inhibit ovarian cancer metastasis by specifically binding to the SSTR2 receptors. J DRUG DELIV SCI TEC. 2024 Sep;98:105851 | F; Mouse. 10.1016/j.jddst.2024.105851
- [IF=2.84] Zhao, Qiuchen, et al. "Intranasal administration of Human umbilical cord mesenchymal stem cells-

• [IF=3.149] Yuksel Olgun. et al. The Effect of Bevacizumab and Propranolol on Nasal Polyposis. INT J CLIN PRACT. 2022 Oct 12;2022:6174664 IHC; Human. 36304979		
Oct 12;2022:6174664 ITC ;TUITIA	111. 36304979	