bs-10052R

[Primary Antibody]

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

EPHA10 Rabbit pAb

DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GenelD: 284656 SWISS: Q5JZY3

Target: EPHA10

Immunogen: KLH conjugated synthetic peptide derived from human EPHA10:

151-250/1008.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

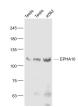
freeze/thaw cycles.

Background: The Eph subfamily represents the largest group of receptor protein tyrosine kinases identified to date (1-3). While the biological activities of these receptors have yet to be determined, there is increasing evidence that they are involved in central nervous system function and in development (1-3). The Eph subfamily receptors of human origin (and their murine/avian homologs) include EphA1 (Eph), EphA2 (Eck), EphA3 (Hek4), EphA4 (Hek8), EphA5 (Hek7), EphA6 (Hek12), EphA7 (Hek11/MDK1), EphA8 (Hek3), EphB1 (Hek6), EphB2 (Hek5), EphB3 (Cek10, Hek2), EphB4 (Htk), EphB5 (Hek9) and EphB6 (Mep). Ligands for Eph receptors include ephrin-A4 (LERK-4) which binds EphA3 and EphB1. In addition, ephrin-A2 (ELF-1) has been described as the ligand for EphA4, ephrin-A3 (Ehk1-L) as the ligand for EphA5 and ephrin-B2 (Htk-L) as the ligand for EphB4 (Htk) (4-7).

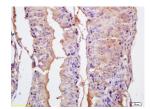
Applications: WB (1:500-2000)

IHC-P (1:100-500) **IHC-F** (1:100-500) **IF** (1:100-500)

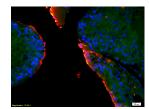
Reactivity: Human, Mouse, Rat


(predicted: Rabbit, Pig, Cow, Chicken, Dog, GuineaPig, Horse)

Predicted


MW.: ¹⁰⁷ kDa

Subcellular Location: Secreted ,Cell membrane


VALIDATION IMAGES

Sample: Testis (Mouse) Lysate at 40 ug Testis (Rat) Lysate at 40 ug K562(Human) Cell Lysate at 30 ug Primary: Anti- EPHA10 (bs-10052R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 107 kD Observed band size: 107 kD

Tissue/cell: rat testis tissue; 4% Paraformaldehyde-fixed and paraffinembedded; Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Incubation: Anti-EPHA10 Polyclonal Antibody, Unconjugated(bs-10052R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining

Tissue/cell: rat testis tissue;4% Paraformaldehyde-fixed and paraffinembedded; Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Incubation: Anti-EPHA10 Polyclonal Antibody, Unconjugated(bs-10052R) 1:200, overnight at 4°C; The secondary antibody was Goat Anti-Rabbit IgG, Cy3 conjugated(bs-0295G-Cv3)used at 1:200 dilution for 40 minutes at 37°C. DAPI(5ug/ml,blue,C-0033) was used to stain the cell nuclei

— SELECTED CITATIONS –

- [IF=5.714] Wenyue Zhao. et al. EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in lung adenocarcinoma. INT IMMUNOPHARMACOL. 2022 Sep;110:109031 WB,IHC; Human. 35839564
- [IF=4.32] Zang et al. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of

siRNA. (2016) Int.J.Nanomedicin. 11:3951-67 FCM ;Human. 27574425						