bs-2552R

[Primary Antibody]

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

CXCL11 Rabbit pAb

DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GeneID: 56066 SWISS: Q9JHH5

Target: CXCL11

Immunogen: KLH conjugated synthetic peptide derived from mouse CXCL11:

22-100/100.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

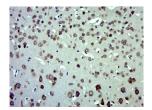
Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

Background: Chemokines are a group of small (approximately 8 to 14 kD), mostly basic, structurally related molecules that regulate cell trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane, G protein-coupled receptors. Chemokines also play fundamental roles in the development, homeostasis, and function of the immune system, and they have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. Chemokines are divided into 2 major subfamilies, CXC and CC. This gene is a CXC member of the chemokine superfamily. Its encoded protein induces a chemotactic response in activated T-cells and is the dominant ligand for CXC receptor-3. The gene encoding this protein contains 4 exons and at least three polyadenylation signals which might reflect cell-specific regulation of expression. IFNgamma is a potent inducer of transcription of this gene. [provided by RefSeq].

Applications: IHC-P (1:100-500)


IHC-F (1:100-500) **IF** (1:100-500)

Reactivity: Mouse (predicted: Rat)

Predicted MW.:

Subcellular Location: Secreted

VALIDATION IMAGES

Paraformaldehyde-fixed, paraffin embedded (Mouse brain): Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (CXCL11) Polyclonal Antibody. Unconjugated (bs-2552R) at 1:400 overnight at $4^{\circ}\text{C},$ followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

- SELECTED CITATIONS -

• [IF=15.1] Christian Martin Gil. et al. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. BRAIN BEHAV IMMUN. 2024 Feb;116:203 IF; Rat. 38070625

• [IF=0] Lee et al. Establishment of a chronic obstructive pulmonary disease mouse model based on the elapsed time after LPS intranasal instillation. (2018) Lab.Anim.Res. 34:01-Oct IHC; Mouse. 29628971	
LPS Intranasai Instillation. (2018) Lab.Anim.Res. 34:01-Oct ITC , MOUSE. 29628971	