

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

phospho-FMRP (Ser500) Rabbit pAb

Catalog Number: bs-13188R

Target Protein: phospho-FMRP (Ser500)

Concentration: 1mg/ml

Form: Liquid Host: Rabbit

Clonality: Polyclonal

Isotype: IgG

Applications: WB (1:500-2000), IHC-P (1:100-500), IHC-F (1:100-500), IF (1:100-500)

Reactivity: Human, Mouse, Rat (predicted:Rabbit, Pig, Sheep, Cow, Zebrafish, Chicken, Dog, GuineaPig,

Danio rerio)

Predicted MW: 75 kDa
Entrez Gene: 2332
Swiss Prot: 006787

Source: KLH conjugated synthesised phosphopeptide derived from human FMRP around the

phosphorylation site of Ser500: NA(p-S)ET.

Purification: affinity purified by Protein A

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.

Background: Fragile X syndrome is the most frequent form of inherited mental retardation and is the

result of transcriptional silencing of the FMR1 gene on the X chromosome. The FMR1 gene contains a distinct CpG dinucleotide repeat located in the 5' untranslated region of the gene.

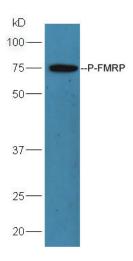
In fragile X syndrome this tandem repeat is substantially amplified and subjected to $\label{eq:continuous} % \[\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} =$

extensive methylation and enhanced transcriptional silencing. The FMR1 protein (or FMRP)

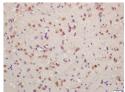
is an RNA-binding protein that associates with polyribosomes and is a likely component of a

 $messenger\ ribonuclear\ protein\ (mRNP)\ particle.\ It\ contains\ several\ features\ that\ are$

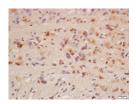
characteristics of RNA-binding proteins, including two hnRNPK homology (KH) domains and


an RGG amino acid motif (RGG box). FMR1 localizes to both the nucleus and the cytoplasm and can also interact with two fragile X syndrome related factors, FXR1 and FXR2, which

form heterodimers through their N-terminal coiled-coil domains. Since FMR1 contains both


a nuclear localization signal and a nuclear export signal it is also implicated in the

nucleocytoplasmic transport of mRNAs.


VALIDATION IMAGES

Protein: brain(mouse) lysates at 40ug; Primary: Anti-P-FMRP (bs-13188R) at 1:300; Secondary: HRP conjugated Goat-Anti-Rabbit IgG(bse-0295G-HRP) at 1:5000; ECL excitated the fluorescence; Predicted band size: 75 kD Observed band size: 75 kD

Tissue/cell: rat brain tissue; 4% Paraformaldehyde-fixed and paraffin-embedded; Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37°C for 20 min; Incubation: Anti-phospho-FMRP(Ser500) Polyclonal Antibody, Unconjugated(bs-13188R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining

Tissue/cell: rat brain tissue; 4% Paraformaldehyde-fixed and paraffin-embedded; Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37°C for 20 min; Incubation: Anti-phospho-FMRP (Ser500) Polyclonal Antibody, Unconjugated(bs-13188R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining

Paraformaldehyde-fixed, paraffin embedded (rat brain); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (phospho-FMRP (Ser500)) Polyclonal Antibody, Unconjugated (bs-13188R) at 1:200 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (rat testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (phospho-FMRP (Ser500)) Polyclonal Antibody, Unconjugated (bs-13188R) at 1:200 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (rat brain); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (phospho-FMRP (Ser500)) Polyclonal Antibody, Unconjugated (bs-13188R) at 1:200 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

PRODUCT SPECIFIC PUBLICATIONS

[IF=6.208] Johnathan M. Borland. et al. Aggression Results in the Phosphorylation of ERK1/2 in the Nucleus Accumbens and the
Dephosphorylation of mTOR in the Medial Prefrontal Cortex in Female Syrian Hamsters. INT J MOL SCI. 2023 Jan;24(2):1379 $\overline{\sf WB}$;
Hamster . 36674893