

Recombinant SARS-Cov-2 Spike RBD protein (BA.5/Omicron), His (HEK293)

Catalog Number:	bs-43156P	
AA Seq:	319-537/1273	
Predicted MW:	26.8	
Tags:	C-His	
Endotoxin:	Not analyzed	
Purity:	>90% as determined by SDS-PAGE	
Storage:	Stored at -70°C or -20°C. Avoid repeated freeze/thaw cycles.	
Background:	The SARS-CoV-2 spike (S) protein is the target of vaccine design efforts to end the COVID-19	
	pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein	
	appeared early during the pandemic, and are now the dominant form worldwide. Here, we	
	analyze the D614G mutation in the context of a soluble S ectodomain construct.	

VALIDATION IMAGES

Measured by its binding ability in a functional ELISA. Immobilized human ACE2, His-Avi Tag (Cat: bs-46001P) at 2µg/mL (100 µL/Well) can bind SARS-CoV-2 Spike RBD (BA.5/Omicron), His Tag (Cat: bs-43156P), the EC50 is 62ng/mL.

kDa	м	R
130 95		
70	-	
53	-	
40	-	
33		-
25	-	
17	-	
10	-	

The purity of the protein is greater than 90% as determined by reducing SDS-PAGE.