

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

Recombinant human PDGF R Beta protein, C-His-Avi (HEK293)

Catalog Number: bs-47186P Concentration: >0.5 mg/ml

AA Seq: 33-530/1106

Predicted MW: 59

Detected MW: Due to glycosylation, the protein migrates to 78-115 kDa based on Tris-Bis PAGE result.

Tags: C-His-Avi
Activity: Not tested

Endotoxin: <1.0 EU/μg as determined by LAL

Purity: >95% as determined by Tris-Bis PAGE; >95% as determined by SEC-HPLC

Purification: AC

Form: Lyophilized

Storage: Lyophilized from 0.22um filtered solution in PBS (pH7.4) with 5mM DTT. Normally 5%

trehalose is added as protectant before Lyophilization. Stored at -70°C or -20°C. Avoid repeated freeze/thaw cycles.

Background: This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-

derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. This gene is flanked on chromosome 5 by the genes for granulocyte-macrophage colony-stimulating factor and macrophage-colony stimulating factor receptor; all three genes may be implicated in the 5-q syndrome. A translocation between chromosomes 5 and 12, that fuses this gene to that of the translocation, ETV6, leukemia gene, results in chronic myeloproliferative disorder with eosinophilia. [provided by RefSeq].

VALIDATION IMAGES

This gene encodes a cell surface tyrosine kinase

Recombinant Human PDGF R beta Protein on

receptor for members of the platelet-derived growth factor family.	Tris-Bis PAGE under reduced conditions. The purity is greater than 95%.