www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800 ## Recombinant human FGFR1 Alpha (IIIc) protein, C-His-Avi (HEK293) Catalog Number: bs-47091P Concentration: >0.5 mg/ml AA Seq: 22-374/822 Predicted MW: 42 Detected MW: Due to glycosylation, the protein migrates to 68-80 kDa based on Tris-Bis PAGE result. Tags: C-His-Avi Activity: Not tested Endotoxin: <1.0 EU/μg as determined by LAL Purity: >95% as determined by Tris-Bis PAGE; >95% as determined by SEC-HPLC Purification: AC Form: Lyophilized Storage: Lyophilized from 0.22um filtered solution in PBS (pH7.4) with 5mM DTT. Normally 5% trehalose is added as protectant before Lyophilization. Stored at -70°C or -20°C. Avoid repeated freeze/thaw cycles. Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through the cellular surface tyrosine kinase receptors. There are four members of the FGF receptor family: FGFR-1 (flg), FGFR-2 (bek, KGFR), FGFR-3 and FGFR-4. Each receptor contains an extracellular ligand binding domain, a transmembrane region and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR-1 can be phosphorylated: Tyr463, Tyr583, Tyr585, Tyr653, Tyr654, Tyr730 and Tyr766. Tyrosine 653 and 654 are important for catalytic activity of the activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCgamma. ## **VALIDATION IMAGES** Human FGFR1 alpha (IIIc) on Tris-Bis PAGE under The purity of Human FGFR1 alpha (IIIc) is greater | | than 95% as determined by SEC-HPLC. | |------|-------------------------------------| | 95%. |