

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

MMP1 Antibody Blocking Peptide

Catalog Number:	bs-0424P
Activity:	Not tested
Purification:	HPLC
Storage:	Shipped at 4°C. Stored at -20°C for one year. Avoid repeated freeze/thaw cycles.
Background:	The matrix metalloproteinases (MMPs) are a family of at least eighteen secreted and
	membrane bound zincendopeptidases. Collectively, these enzymes can degrade all the
	components of the extracellular matrix, including fibrillar and non fibrillar collagens,
	fibronectin, laminin and basement membrane glycoproteins. In general, a signal peptide, a
	propeptide, and a catalytic domain containing the highly conserved zinc binding site
	characterizes the structure of the MMPs. In addition, fibronectin like repeats, a hinge region,
	and a C terminal hemopexin like domain allow categorization of MMPs into the collagenase,
	gelatinase, stomelysin and membrane type MMP subfamilies. All MMPs are synthesized as
	proenzymes, and most of them are secreted from the cells as proenzymes. Thus, the
	activation of these proenzymes is a critical step that leads to extracellular matrix
	breakdown. MMPs are considered to play an important role in wound healing, apoptosis,
	bone elongation, embryo development, uterine involution, angiogenesis and tissue
	remodeling, and in diseases such as multiple sclerosis, Alzheimer's, malignant gliomas,
	lupus, arthritis, periodontis, glumerulonephritis, atherosclerosis, tissue ulceration, and in
	cancer cell invasion and metastasis.