bs-1046R

[Primary Antibody]

Bioss

www.bioss.com.cn

sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

- DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

CCL4 Rabbit pAb

GenelD: 20303 **SWISS:** P14097

Target: CCL4

Immunogen: KLH conjugated synthetic peptide derived from mouse MIP-1 beta:

21-92/92.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

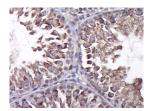
freeze/thaw cycles.

Background: MIP1 alpha and MIP1 beta were originally co-purified from medium

conditioned by an LPS-stimulated murine macrophage cell line. Human MIP1 beta refers to the products of several independently cloned cDNAs, including Act2, PAT 744, hH400, G26, HIMAP, HC21, and MAD 5a. The predicted protein products of these cDNAs represent variants that are between 94% - 98% identical and these proteins are all approximately 75% homologous to murine MIP1 beta. MIP1 beta also shares approximately 70% amino acid identity with MIP1 alpha. MIP1 proteins are expressed primarily in T cells, B cells, and monocytes after antigen or mitogen stimulation. The MIP1 proteins have chemoattractant and adhesive effects on lymphocytes, with MIP1 alpha and MIP1 beta preferentially attracting CD8+ and CD4+ T cells, respectively. A signal transducing receptor designated the CC chemokine receptor 1 (CC CKR1) with seven transmembrane domains that binds MIP1 alpha, MIP1 beta, MCP1 and RANTES with varying affinities has been isolated.

Applications: IHC-P (1:100-500)

IHC-F (1:100-500) **IF** (1:100-500)


Reactivity: Human, Rat

(predicted: Mouse)

Predicted MW.: 7.8 kD

Subcellular Location: Secreted

VALIDATION IMAGES

Paraformaldehyde-fixed, paraffin embedded (Rat testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (CCL4) Polyclonal Antibody, Unconjugated (bs-1046R) at 1:400 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (Rat brain); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (CCL4) Polyclonal Antibody, Unconjugated (bs-1046R) at 1:400 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructions and DAB staining.

- SELECTED CITATIONS -

• [IF=14.7] Xinyu Zhao. et al. Caffeic acid-vanadium nanozymes treat skin flap ischemia-reperfusion injury through macrophage reprogramming and the upregulation of X-linked inhibitors of apoptotic proteins. ACTA PHARM SIN B. 2024

	i Kobayashi. et al. CCL4 Fur F ;Human. 35892679	,, ,	
022 Aug;10(8):1779 I	F ,FIUITIATI. 35892679		