

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

Clenbuterol Rabbit pAb

Catalog Number: bs-4532R
Target Protein: Clenbuterol
Concentration: 1mg/ml

Form: Liquid

Host: Rabbit

Clonality: Polyclonal

Isotype: IgG

Applications: ELISA (1:5000-10000)

Reactivity: (predicted:Clenbuterol)

Predicted MW: 0.31365 kDa

Purification: affinity purified by Protein A

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.

Background: Clenbuterol belongs to the group of agonists. In livestock production clenbuterol improves

the meat/fat ratio in fattened animals or accelerate the growth. Up to now agonists have not been authorized as adjuvants for fattening. In addition to its lipolytic and anabolic effect, clenbuterol has a relaxing effect on non-striated musculature on which is based its therapeutic use as an antiasthmatic and a tocolytic agent. When employed as a fattening adjuvant, as compared with the therapeutic use, clenbuterol is administered in a 5 to 10 times higher dose. Therefore, it is possible that clenbuterol residues may lead to a risk for consumers after illegal administration. Using the clenbuterol monocalantibody, it is possible to detect clenbuterol and other agonists in urine, muscle and liver both rapidly and with accuracy. Clenbuterol is a long acting beta 2 adrenergic agonist. Like other beta 2 agonists, clenbuterol is believed to act by stimulating production of cyclic AMP through the activation

of adenyl cyclase. By definition, Beta 2 agonists have more smooth muscle relaxation activity (bronchial, vascular and uterine smooth muscle) versus its cardiac effects (Beta 1).

PRODUCT SPECIFIC PUBLICATIONS

[IF=5.705] Ji R et al. A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchimica Acta, 2018 185(4). Other; Pork . 10.1007/s00604-018-2746-1

[IF=2.6] Wu, Yichuan, et al. "Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System." Applied Biochemistry and Biotechnology(2015): 1-11. Other; ="" . 26319570

[IF=2.31] Yao, Manwen, et al. "Spectral surface plasmon resonance imaging for the detection of clenbuterol via three-dimensional
immobilization of bio-probes. "Analytical Biochemistry (2015). Other ; = " " . 25637304