bs-2987R

[Primary Antibody]

BIOSS

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

Vitamin D Receptor Rabbit pAb

- DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GenelD: 7421 **SWISS:** P11473

Target: Vitamin D Receptor

Immunogen: KLH conjugated synthetic peptide derived from human Vitamin D

Receptor: 65-180/427.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

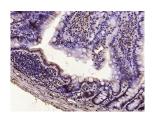
Background: Nuclear hormone receptor. Transcription factor that mediates the

action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.

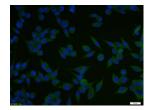
Applications: IHC-P (1:100-500)

IHC-F (1:100-500) IF (1:100-500) ICC/IF (1:100-500)

Reactivity: Human, Rat


(predicted: Mouse, Rabbit, Pig, Cow, Chicken, Horse)

Predicted ,


MW.: ^{47 kDa}

Subcellular Location: Cytoplasm ,Nucleus

VALIDATION IMAGES

Paraformaldehyde-fixed, paraffin embedded (Rat small intestine); Antigen retrieval by microwave in sodium citrate buffer (pH6.0); Block endogenous peroxidase by 3% hydrogen peroxide for 30 minutes; Blocking buffer (3% BSA) at RT for 30min; Antibody incubation with (Vitamin D Receptor) Polyclonal Antibody, Unconjugated (bs-2987R) at 1:400 overnight at 4°C, followed by conjugation to the secondary antibody (labeled with HRP) and DAB staining.

A431 cell; 4% Paraformaldehyde-fixed; Triton X-100 at room temperature for 20 min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Antibody incubation with (Vitamin D Receptor) polyclonal Antibody, Unconjugated (bs-2987R) 1:100, 90 minutes at 37°C; followed by a conjugated Goat Anti-Rabbit IgG antibody at 37°C for 90 minutes, DAPI (blue, C02-04002) was used to stain the cell nuclei.

SELECTED CITATIONS —

- [IF=6.575] Natalia Łabędź. et al. Modulation of Fibroblast Activity via Vitamin D3 Is Dependent on Tumor

 Type—Studies on Mouse Mammary Gland Cancer. CANCERS. 2022 Jan;14(19):4585 IF;Mouse. 36230508
- [IF=4.6] Stachowicz-Suhs Martyna. et al. Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines. SCI REP-UK. 2024 Feb;14(1):1-20 WB; Human. 38355711
- [IF=4.285] Stenhouse Claire. et al. Effects of progesterone and interferon tau on ovine endometrial phosphate, calcium, and vitamin D signaling. Biol Reprod. 2022 Feb;: IHC; Sheep (Ewe) . 10.1093/biolre/ioac027

 [IF=4.095] Jeremy M et al. Vitamin D3 mediated regulation of steroidogenesis mitigates testicular activity in an aged rat model. J Steroid Biochem Mol Biol. 2019 Jun;190:64-75. WB; Rat. 30923019 [IF=3.1] Song, Zhixia, et al. "The PI3K/p-Akt Signaling Pathway participates in Calcitriol Ameliorating Podocyte Injury in DN Rats." Metabolism (2014). IHC; Rat. 25044177