bsm-60164M

[Primary Antibody]

Histone H3 (tri methyl K9, phospho S10) Mouse mAb

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

- DATASHEET -

Host: Mouse Isotype: IgG
Clonality: Monoclonal CloneNo.: G5E7

Target: Histone H3 (tri methyl K9, phospho S10)

during both mitosis and meiosis.

Purification: Antigen affinity purification

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

Background: Modulation of the chromatin structure plays an important role in

the regulation of transcription in eukaryotes. The nucleosome, made up of four core histone proteins (H2A, H2B, H3 and H4), is the primary building block of chromatin. The N-terminal tail of core histones undergoes different posttranslational modifications including acetylation, phosphorylation and methylation. These modifications occur in response to cell signal stimuli and have a direct effect on gene expression. In most species, the histone H2B is primarily acetylated at lysines 5, 12, 15 and 20. Histone H3 is primarily acetylated at lysines 9, 14, 18 and 23. Acetylation at lysine 9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms. Phosphorylation at Ser10 of histone H3 is tightly correlated with chromosome condensation

VALIDATION IMAGES

Blocking buffer: 5% NFDM/TBST Primary ab dilution: 1:2000 Primary ab incubation condition: 2 hours at room temperature
Secondary ab: Goat Anti-Mouse IgG H&L (HRP)
Lysate: (-) HeLa, (+) HeLa+Nocodazole
(100ng/ml, 18hr) +Calyculin A (100nM, 1hr)
Protein loading quantity: 20 µg Exposure time:
60 s Predicted MW: 17 kDa Observed MW: 17 kDa

Applications: WB (1:500-1:2000)

Reactivity: Human (predicted: Mouse,

Rat)

Subcellular Location: Nucleus