

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

CD112 Rabbit pAb

Catalog Number: bs-2679R Target Protein: CD112

Concentration: 1mg/ml

Form: Liquid Host: Rabbit

Clonality: Polyclonal

Isotype: IgG

Applications: Flow-Cyt (1µg /test)

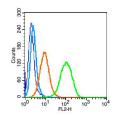
Reactivity: Human (predicted:Mouse, Rat, Cow, Horse)

Predicted MW: 56 kDa Entrez Gene: 5819 Swiss Prot: Q92692

Source: KLH conjugated synthetic peptide derived from human CD112: 251-350/538.

Purification: affinity purified by Protein A

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.


Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.

Background: Nectin 2 is a single-pass type I membrane glycoprotein with two Ig-like C2-type domains and

an Ig-like V-type domain. This protein is one of the plasma membrane components of adherens junctions. It also serves as an entry for certain mutant strains of herpes simplex virus and pseudorabies virus, and it is involved in cell to cell spreading of these viruses. Variations in this gene have been associated with differences in the severity of multiple sclerosis. Alternate transcriptional splice variants, encoding different isoforms, have been

characterized. Can form trans-heterodimers with PVRL3/nectin-3.

VALIDATION IMAGES

Blank control(blue): U937(fixed with 2% paraformaldehyde (10 min)). Primary Antibody:Rabbit Anti-CD112 antibody(bs-2679R), Dilution: $1\mu g$ in 100 μL 1X PBS containing 0.5% BSA; Isotype Control Antibody: Rabbit IgG(orange) ,used under the same conditions); econdary Antibody: Goat anti-rabbit IgG-PE(white blue), Dilution: 1:200 in 1 X PBS containing 0.5% BSA.

PRODUCT SPECIFIC PUBLICATIONS

1 AET Waters Aliais M. et al. UEffect of Depart Department Constitution (Co. L. 1971)	rooliniool Ml - l · · · C
[IF=1.45] Waters, Alicia M., et al. "Effect of Repeat Dosing of Engineered Oncolytic Herpes Simplex Virus on Preclinical Models of	
odomyosarcoma." Translational Oncology 9.5 (2016): 419-430. WB;="Human". 27751346	