bs-20646R

[Primary Antibody]

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

RANKL/CD254 Rabbit pAb

DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GeneID: 8600 SWISS: 014788

Target: RANKL/CD254

Immunogen: KLH conjugated synthetic peptide derived from human

RANKL/CD254: 41-140/317.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

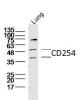
Background: This gene encodes a member of the tumor necrosis factor (TNF) cytokine family which is a ligand for osteoprotegerin and functions as a key factor for osteoclast differentiation and activation. This protein was shown to be a dentritic cell survival factor and is involved in the regulation of T cell-dependent immune response. T cell activation was reported to induce expression of this gene and lead to an increase of osteoclastogenesis and bone loss. This protein was shown to activate antiapoptotic kinase AKT/PKB through a signaling complex involving SRC kinase and tumor necrosis factor receptor-associated factor (TRAF) 6, which indicated this protein may have a role in the regulation of cell apoptosis. Targeted disruption of the related gene in mice led to severe osteopetrosis and a lack of osteoclasts. The deficient mice exhibited defects in early differentiation of T and B lymphocytes, and failed to form lobulo-alveolar mammary structures during pregnancy. Two alternatively spliced transcript variants have been found. [provided by RefSeq, Jul 2008].

Applications: WB (1:500-2000)

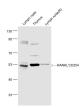
Flow-Cyt (1ug/Test)

Reactivity: Human, Mouse

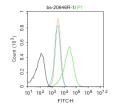
(predicted: Rat, Rabbit, Pig, Cow, Zebrafish, Dog, Horse)


Predicted 35 kDa

MW.:


Subcellular Secreted ,Cell membrane

Location: .Cytoplasm


VALIDATION IMAGES

Sample: Lung (Mouse) Lysate at 40 ug Primary: Anti-CD254 (bs-20646R) at 1/300 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 35 kD Observed band size: 37/50 kD

Sample: Lymph node (Mouse) Lysate at 40 ug Thymus (Mouse) Lysate at 40 ug Lymph node (Rat) Lysate at 40 ug Primary: Anti-RANKL'CD254 (bs-20646R) at 1/500 dilution Secondary: IRDve800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 37'50 kD Observed band size: 50 kD

Blank control:HL-60. Primary Antibody (green line): Rabbit Anti-RANKL/CD254 antibody (bs-20646R) Dilution: 1µg/10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody: Goat anti-rabbit IgG-AF488 Dilution: 1µg /test. Protocol The cells were fixed with 4% PFA (10min at room temperature) and then permeabilized with 0.1% PBST for 20 min at room temperature. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.

SEL	ECTED CITATIONS —
•	[IF=0] Francesca Punzoet al. Can Denosumab be used in combination with Doxorubicin in Osteosarcoma?. Oncotarget 2020 Jul 14;11(28):2763-2773. WB ;Human. 32733647