bs-3882R

[Primary Antibody]

BIOSS ANTIBODIES www.bioss.com.cn

GPX1 Rabbit pAb

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

DATASHEET -

Host: Rabbit Isotype: IgG

Clonality: Polyclonal

GenelD: 14775 **SWISS:** P11352

Target: GPX1

Immunogen: KLH conjugated synthetic peptide derived from mouse Glutathione

Peroxidase 1: 51-150/201.

Purification: affinity purified by Protein A

Concentration: 1mg/ml

Storage: 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50%

Glycerol.

Shipped at 4°C. Store at -20°C for one year. Avoid repeated

freeze/thaw cycles.

Background: This gene product belongs to the family of glutathione peroxidase,

which functions in the detoxification of hydrogen peroxide. It contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon, which normally signals translation termination. The 3' UTR of Sec-containing genes have a common stem-loop structure, the sec insertion sequence (SECIS), which is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. [provided by RefSeq].

Applications: WB (1:500-2000)

Reactivity: Mouse, Rat

Predicted MW.: 22 kDa

Subcellular Location: Cytoplasm

VALIDATION IMAGES

Sample: Lane 1: Mouse Liver tissue lysates Lane 2: Mouse Spleen tissue lysates Lane 3: Mouse Kidney tissue lysates Lane 4: Rat Liver tissue lysates Lane 5: Rat Heart tissue lysates Lane 6: Rat Spleen tissue lysates Lane 7: Rat Kidney tissue lysates Primary: Anti-GPX1 (bs-3882R) at 1/500 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 22 kDa Observed band size: 22 kDa

Sample: Spleen (Mouse) Lysate at 40 ug Primary: Anti- GPX1 (bs-3882R) at 1/300 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 22 kD Observed band size: 22 kD

- SELECTED CITATIONS -

- [IF=12.2] Li Mou. et al. GRP78/IRE1 and cGAS/STING pathway crosstalk through CHOP facilitates iodoacetic acid-mediated testosterone decline. J HAZARD MATER. 2024 Sep;476:135101 WB ;Rat. 39002476
- [IF=8.8] Jiajun Chen. et al. Integrating UHPLC-MS/MS quantitative analysis and exogenous purine supplementation to elucidate the antidepressant mechanism of Chaigui granules by regulating purine metabolism. J PHARM ANAL. 2023 Aug;: WB; Rat. 10.1016/j.jpha.2023.08.008
- [IF=6.291] Changjiang Liu. et al. JNK and Jag1/Notch2 co-regulate CXCL16 to facilitate cypermethrin-induced kidney damage. ECOTOX ENVIRON SAFE. 2022 Jun;238:113582 WB; Rat. 35512476
- [IF=6.1] Yun, Yang, et al. "Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-

IF=6.208] Yanan Hao. et al. Alginate Oligosaccharides Repair Liver Injury by Improving Anti-Inflammatory Capacit Busulfan-Induced Mouse Model. INT J MOL SCI. 2023 Jan;24(4):3097 WB;Mouse. 36834506						