

www.bioss.com.cn sales@bioss.com.cn techsupport@bioss.com.cn 400-901-9800

HSP70 Mouse mAb

Catalog Number: bsm-33048M

Target Protein: HSP70
Concentration: 1mg/ml

Form: Size:50ul/100ul/200ul

Liquid

Size: 200ug (PBS only)

Lyophilized

Note: Centrifuge tubes before opening. Reconstitute the lyophilized product in distilled

water. Optimal concentration should be determined by the end user.

Host: Mouse

Clonality: Monoclonal

Clone No.: 5G10
Isotype: IgG

Applications: WB (1:500-1000), IHC-P (1:100-500), IHC-F (1:100-500), IF (1:100-500)

Reactivity: Human, Mouse, Rat

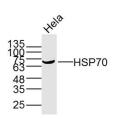
Predicted MW: 70 kDa
Entrez Gene: 3303
Swiss Prot: P0DMV8

Purification: affinity purified by Protein G

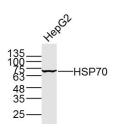
Storage: Size:50ul/100ul/200ul

0.01 M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

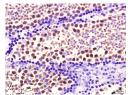
Size: 200ug (PBS only)

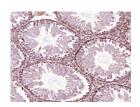

0.01M PBS

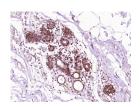
Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.

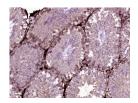

Background: This intronless gene encodes a 70kDa heat shock protein which is a member of the heat

shock protein 70 family. In conjuction with other heat shock proteins, this protein stabilizes existing proteins against aggregation and mediates the folding of newly translated proteins in the cytosol and in organelles. It is also involved in the ubiquitin-proteasome pathway through interaction with the AU-rich element RNA-binding protein 1. The gene is located in the major histocompatibility complex class III region, in a cluster with two closely related


genes which encode similar proteins. [provided by RefSeq, Jul 2008].


Sample: Hela Cell (Human) Lysate at 40 ug Primary: Anti-HSP70 (bsm-33048M) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Mouse IgG at 1/20000 dilution Predicted band size: 70 kD Observed band size: 70 kD


Sample: HepG2 Cell (Human) Lysate at 40 ug Primary: Anti-HSP70 (bsm-33048M) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Mouse IgG at 1/20000 dilution Predicted band size: 70 kD Observed band size: 70 kD


Paraformaldehyde-fixed, paraffin embedded (Mouse testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (HSP70) Monoclonal Antibody, Unconjugated (bsm-33048M) at 1:400 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (Rat testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (HSP70) Monoclonal Antibody, Unconjugated (ascites of bsm-33048M 5G10) at 1:2000 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (Human breast carcinoma); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (HSP70) Monoclonal Antibody, Unconjugated (ascites of bsm-33048M 5G10) at 1:2000 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.

Paraformaldehyde-fixed, paraffin embedded (Mouse testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (HSP70) Monoclonal Antibody, Unconjugated (ascites of bsm-33048M 5G10) at 1:2000 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.

PRODUCT SPECIFIC PUBLICATIONS

[IF=9.4] Haijiao Wang. et al. Catalase-positive Staphylococcus epidermidis based cryo-millineedle platform facilitates the photo-immunotherapy against colorectal cancer via hypoxia improvement. J COLLOID INTERF SCI. 2024 Dec;676:506 IF; MOUSE. 39047378 [IF=3.257] Cui et al. Chronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. (2016) Int.J.Mol.Sc. 17 WB; Pig. 27187351

[IF=2.8] Meng-Hao Pan. et al. The formins inhibitor SMIFH2 inhibits the cytoskeleton dynamics and mitochondrial function during goat
oocyte maturation. THERIOGENOLOGY. 2023 Nov;211:40 IF; Sheep. 37562190